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Abstract-The focus of this work is the numerical simulation of interface motion during solidification of 
pure materials. First, we assess the applicability of the oft-used quasi-stationary approximation for interface 
motion. Such an approximation results in poor accuracy for non-trivial Stefan numbers. Next, a generic 
interface tracking procedure is designed, which overcomes restrictions of single-valuedness of the interface 
imposed by commonly used mapping methods. This method incorporates with ease interface phenomena 
involving curvature, which assume importance at the smaller scales of a deformed interface. The method 
is then applied to study the development of a morphologically unstable phase interface. The issue of 
appropriate scaling has been addressed. The Gibbs-Thomson effect for curved interfaces has been included. 
The evolution of the interface, with the competing mechanisms of undercooling and surface tension is 

found to culminate in tip-splitting, cusp formation and persistent cellular development. 

1. INTRODUCTION 

WITH INCREASING demand for high-quality materials 
produced at economically viable rates, the physics 
involved in their processing has received considerable 
attention from the fluid mechanics and materials 
science communities. The objective is to understand 
and hence control the thermofluid aspects of the phase 
change process, in order to obtain desired impurity 
concentration distributions and structural uniformity. 
Apart from its economic significance, the study of the 
solidification process has also been viewed as a means 
to unearth a paradigm for ‘pattern formation’ in 
nature [I, 21. The fundamental issue to be resolved is 
how such qualitatively reproducible patterns emerge 
from the apparently random field resulting from the 
diffusion process. 

Analytical treatments of the complete diffusion 
problem encounter nonlinearities and non-locality 
associated with motion of the deformed interface 
separating the two phases. This is a descendent of 
the Stefan problem [3] of considerable mathematical 
interest. Computation of the motion of the phase 
interface in the complete diffusional form have been 
made, for example, by Brush and Sekerka [4] for 
crystal growth and for the analogous Saffman-Taylor 
problem, by DeGregoria and Schwartz [5]. While the 
former use a finite difference approach with a mapping 
method, the latter employ the boundary element tech- 
nique. Finite element methods have also been fre- 
quently used [6,7] to capture the deformed interfaces. 

Under suitable conditions, instability of the phase 
interface ultimately leads to a highly branched, 
dendritic structure [I, 81. Competing mechanisms 
determine such characteristics of the dendrite as wave- 

length of the primary instability, the radius at the tip 
of the paraboloidal primary dendrite, the emergence 
of side-branches, and side-branch spacing. While the 
supercooling of the melt destabilises in the sense that 
a small outward bump on the solid will grow, surface 
tension stabilises by establishing a short wavelength 
cutoff. The preferred orientations of the dendrites 
and the side-branching activity are believed to be 
controlled ‘microscopicahy by the anisotropy that 
naturally prevails in a crystal lattice [8]. Thus, from 
the geometry and physical mechanisms involved, it is 
obvious that a faithful simulation of morphological 
evolution is predicated on accurate computation of 
the location and curvature of the phase change front. 

Among the methods proposed in the literature 
to track moving fronts [3,9] one commonly used 
approach [4,10,1 I] involves coordinate transfor- 
mation to map the irregularly shaped physical 
domain onto a regular computational domain. The 
solutions may then be obtained in the transformed 
domain and the interface position updated. Often a 
further simplification is made by assuming that the 
time scale for interfacial motion is long compared to 
thermal relaxation times, This justifies dropping terms 
representing grid movement from the equations 
governing interface motion [ IO,1 11. This procedure is 
termed quasi-stationary and is appropriate for slow- 
moving interfaces. 

Hitherto, simmations of phase change found little 
need for the curvature-dependent interface tem- 
perature condition, the Gibbs-Thomson effect [12], 
since in capturing the global shape of the phase 
boundary, the local curvatures are not signifioant. 
However, if one is interested in resolving the micro- 
structure resulting from the phase change, then it is 
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NOMENCLATURE 

5 specific heat 
do capillary length 
F dimensionless function defining 

interface 
H characteristic length scale 
J inverse Jacobian of transformation 
k thermal conductivity 
IT diffusion length 
L latent heat of fusion 
n unit normal vector to interface, pointing 

toward the cold direction 
n dimensional normal coordinate 
t dimensional time 
T dimensional temperature 
s(y, t) dimensional function defining interface 
S( Y, t*) dimensionless function defining 

interface 
St Stefan number 
V er, velocity scale of outer region 
VP4 normal velocity of interface 
(x, y, t) physical coordinates 
(X, Y, t*) non-dimensional physical 

coordinates. 

Greek symbols 
u thermal diffusivity 
Y dimensional surface tension 
Yea effective surface tension 
9 dimensionless temperature 
K curvature 
1 root of equation (10) 
AC instability wavelength 
V inner region velocity scale 
(5, PI, 7) transformed coordinates 
P dimensional density 
? dimensionless time 
9 arc length along interface. 

Superscripts 
* non-dimensional quantity. 

Subscripts 
I liquid 
S solid 
eq equilibrium 
interface interface value 
m melting point. 

well known from morphological stability theory [I] 
that microscopic mechanisms hold the key to a 
description of instabilities. This distinction in com- 
putational requirements arises due to the length scales 
of the morphological features. In the well-investigated 
material succinonitrile (SCN) [13], for instance, the 
instability length (the wavelength selected) is in the 
range of microns. The diffusion length, i.e. the dis- 
tance over which the thermal field relaxes is of the 
order of millimetres. Thus, on a macroscopic scale, the 
global phase change front is virtually unaffected by 
morphological instabilities. However, the all-impor- 
tant microstructure of the crystal is controlled by the 
interfacial phenomena. Thus, there is a need to bridge 
the gap between (i.e. to match) the two disparate 
thermal fields and interfacial behaviour. 

In the present work, we first seek to assess the 
impact of a quasi-stationary approximation on the 
accuracy of numerical solutions. This is the content 
of Section 2. In Section 3, we reformulate the interface 
treatment to avoid the restriction to non-branched 
and isothermal interfaces inherent in most methods 
currently in use [lo, 111. The computational procedure 
developed is then applied to compute the motion of 
deformed interfaces. In Section 4, we introduce the 
scaling appropriate to a physically realistic thermal 
field in which the interface morphology develops. It 
will be shown that such scaling is applicable to the 
inner region, i.e. to the instability events at the small 
scales. The method will then be applied to illustrate 
the competition among the mechanisms affecting stab- 
ility, such as surface tension and thermal diffusion. 

2. ASSESSMENT OF THE QUASI-STATIONARY 
APPROXIMATION 

For a pure conduction problem with phase change 
between liquid and solid, the governing equations, in 
dimensional form, for the energy transfer and inter- 
face movement are, respectively [3], 

!$+$+$j. i= 1,s (1) 

p~$= -k,g+k,$ (2) 

The partials with respect to II represent derivatives in 
the direction of the local normal to the interface. 
The following non-dimensionalizing procedure is 
adopted: X = x/H, Y = y/H, S = s/H, H being a 
representative length scale to be chosen for the 
specific problem studied, t* = uit/H2, p* = p/p, and 
0 = (T- r,,,)/( T, - T,,,), where T, and T, are, respec- 
tively, the melting temperature and the imposed tem- 
perature at the appropriate boundary. Consider heat 
transport in the liquid phase only. Then, equations 
(1) and (2), discarding the subscript, become : 

ae a% a28 
at*=F+p (3) 

a0 ,o* as --=-- 
an* st at* 

where St = c,(T, - T,,,)/L is the Stefan number. 

(4) 
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X 
erf - ( > 2./G 

If X = S( Y. t), then equation (4) specialised to an 
isothermal interface, can be rewritten as 

Following the transformation from Cartesian (X, Y, ,) 
to curvilinear (5, ~7.7) coordinates 1141, such that 
X = X( 5, u, 7), Y = Y( 5, n, 7) and r* = T, equations 
(3) and (4) become: 

+ ;tY&-x;r,)s, 1 (6b) 
where 

q, = x;+y* ‘I ’ 

q2 = x,x,+ y,r,, 

q3 = x;+ Y’ $1 

J= X,Y,,-X,,Y,. (7) 

Equations (6a) and (6b) constitute the complete set of 
the equations in the generalised coordinates for energy 
transfer and interface movement. In the course of the 
computations, at every time step, both equation (6a) 
and (6b) need to be iteratively updated until they are 
simultaneously satisfied everywhere in the domain. 
Standard second-order central differences are used for 
all spatial derivatives. The quasi-stationary approach 
adopted by many researchers, e.g. [IO, 1 I], simplifies 
the above equations by dropping all the terms involv- 
ing coordinate movement, i.e. X,, Y,. To test whether 
such a simplification is acceptable, we design a situ- 
ation where the interface moves as a planar front. In 
addition, the temperature in the solid is considered 
uniform. Thus the heat transport is effectively one- 
dimensional and occurs in the liquid phase only. 
Boundary and initial conditions are therefore given 
by 131, 

B.C. 

8=1, x=0, 720 

e=o, xas, 720 (8) 

I.C. 

0(X,7 = 0.1) = I - 
erf ;A) 

S(X, 7 = 0.1) = 2AJo.1 

where 1 is the root of the following equation 

(9) 

(10) 

The exact solution [3] for equations (3) and (4), with 
p* = I, with the boundary and initial conditions given 
in equations (8) and (9) is 

X 
erf ~ ( > 2.L 

B=I- 
erf (X, 

TWO numerical solution procedures are designed to 
compare the solutions obtained from the complete 
form ofequations (6a) and (6b) and the quasi-station- 
ary form : 

(I) Full treatment : a standard procedure involving 
backward Euler time stepping along with a second- 
order central difference spatial discretization scheme 
is used to solve equations (6a) and (6b). This full set 
of equations is solved iteratively in a coupled manner 
to continually update the nonlinear coefficients result- 
ing from the coordinate movement and transform- 
ation. 

(2) Quasi-stationary treatment : by invoking the 
quasi-stationary assumption, coordinate movement 
terms are neglected. On dropping the grid movement 
terms, the equations governing energy transfer and 
interface movement are decoupled and only a simple 
explicit procedure is needed to update the interface 
location. 

Three values of the Stefan number were chosen 
to test the performance of the above two numerical 
approaches. Eleven grid points are used along the x- 
direction in each case. For small Sf, i.e. 0.1303, as seen 
in Fig. l(a), both full and quasi-stationary solutions 
are in close agreement with the exact solution in terms 
of the interface trajectory as well as the temperature 
profile, although the full approach is marginally 
superior. However, as expected, with increasing St the 
quality of solutions obtained from the quasi-station- 
ary method is progressively degraded. In contrast, 
good agreement is maintained between the solutions 
of the full approach and the exact solution. Although 
the Stefan number observed from many naturally 
occurring processes is small, for some problems of 
current technological significance, such as the con- 
tinuous ingot casting of metal alloys [15], Stefan 
numbers of order 1 are commonly encountered. Obvi- 
ously, with a low St, the interface velocity is modest, 
and neglecting grid movement terms does not im- 
pact significantly on the numerical accuracy. As Sf 
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FIG. 1. Comparison of trajectories predicted by the full 
equations and the quasi-stationary equations with exact solu- 

tion, for three values of Stefan number. 
. 

becomes larger, however, the simplification to the 
quasi-stationary approach is no longer acceptable. 

3. A GENERAL PROCEDURE FOR INTERFACE 

TRACKING 

As mentioned in Section 2, equations (6a) and (6b) 
apply only to an isothermal interface. Also, the con- 
struction of those equations precludes the possibility 
of capturing branched interfaces. As a first step 
towards overcoming this difficulty, an alternate inter- 
face treatment is designed as follows. Consider the 
equation for interface advance, 

-~v+&~$]. (12) 

The local normal to the interface is given by, 

where F = F(X, Y, I*) is the curve defining the inter- 
face. The interface shape is defined in a piecewise 
fashion to facilitate handling of branched interfaces. 
Here a quadratic polynomial fit is performed for three 
successive nodal points at each point of the interface. 
Thus, at the ith point on the interface we designate 
the curve, 

Yi = a,x,‘+b,Xi+ci, 

i.e. F, = Y;-(aiX~+b,Xi+ci) 

defines the interface. 
The uir bi and ci are determined from the known 

values (X,, Y,), j = i- 1, i, if 1. The choice of the 
piecewise approximating polynomial is not restricted 
to the parabolic form. In fact, using circular arc 
elements is more convenient for handling multiple- 
valued interfaces and is in use in ongoing work. The 
local curve definition yields the deriatives (F,, F,, and 
F,,X) at each point on the interface. Thus the the cur- 
vature at each point is obtained from, 

We may write equation (12) as, 

(15) 

In computing the interface normal velocity then, 
one seeks to obtain the derivatives F,, I$ and 0,X, 0,.. 
The derivatives of temperature may be obtained in the 
transformed coordinates itself. F, and Fy of course are 
directly available in the physical domain from the 
curve fit. Thus the new coordinates of the interfacial 
points are obtained from : 

aF vN* 
x"+' = x"+ axlvF16'* (164 

Y n+I = y"+dFv,*&* 
ay IVFj (16b) 

where &* is the time step size. Having obtained these 
new coordinates of the curve, the thermal field is 
solved for once again, the curve fit is performed at the 
interface and a fresh interface position is obtained 
from equations (16a) and (16b). All these procedures 
are performed in a fully coupled manner involving 
interaction among the temperature field, interface 
motion and grid movement at each iteration. This 
alternative interface treatment is compared firstly with 
the results of Section 2, where the thermal field is 
active in the liquid region only. The boundary con- 
ditions are given by equation (8). From Figure 2 it is 
evident that for all three Stefan numbers tried, namely, 
0.1303, 1.2216 and 2.8576, the accuracy of the present 
scheme is satisfactory and comparable to those in 
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FIG. 2. Comparison of computed and exact solutions for Sr = 0.1303, Sf = 1.2216 and Sf = 2.8576. The 
respective Stefan numbers are shown in the boxes. (a) Exact and computed temperature fields at different 

time instants. (b) Superposed exact and computed interface locations vs time. 

Section 1, Fig. 1. As can be seen, the computed and sufficiently slow moving interfaces) by the Gibbs- 
exact temperature fields are in excellent agreement. Thomson formula, 

4. MOTION OF CURVED FRONTS 

The interface tracking method developed in Section 
3 is now applied to follow the development of the 
phase change front from long enough times to obtain 
substantial curvature of an initially slightly perturbed 
interface. Physically, when the phase interface is 
deformed surface tension seeks to round out regions 
of strong curvature. This effect is expressed, for an 
interface in thermodynamic equilibrium (i.e. for 

T,,, is the melting temperature of a flat interface. 
Tmerroce,eq is the modified temperature after accounting 
for the Gibbs-Thomson effect, and in this form is 
applicable to an interface in chemical equilibrium. 
Thus, surface tension y acts to lower the temperature 
of regions of strong positive curvature, hence exerting 
a stabilising influence. Here, K is the local curvature 
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of the front. In reality, the lattice of the growing 
crystal imposes a directional dependence on the value 
of the surface tension [ 161. Then y  becomes a function 
of 4, the angular deviation of the local normal at the 
interface from the growth axis. In summary, equations 
(I), (2) and (17) provide a complete set of equations 
governing motion of curved interfaces under the 
assumption that the interface kinetics is infinitely fast 
compared to the time scales of diffusion and interfacial 
motion. 

A procedure for scaling 
(i) Inner region. For the phase change problem, 

in the absence of convection, two length scales are 
obtained. lr = 2u/V,, is the thermal diffusion length, 
and d, = r/L, is the capillary length. Linear stability 
analysis [I] of a planar interface indicates that the 
critical wavelength for morphological stability is given 

by, 

4 = 0(&z. (18) 
Thus the instability wavelength lies in the range of 

microns. Therefore three distinct scales can be defined. 
The only length scale that is a property of the material 
is the capillary length d, ( =)rL). In practice the sole 
parameter that is externally controlled for solidific- 
ation from a pure melt is the melt undercooling 
A. The front velocity for a planar front is then a 
function of A and the size of the domain. In tracking 
the morphological development of the interface the 
length scale of concern is the instability wavelength 
i,, which will be adopted as our length scale. Let us 
define the region at the scale of AC as the inner region 
and that corresponding to lr as the outer region (here 
we shall take 1, = ,/(d,l,)). 

Figure 3 illustrates the situation resulting from the 

differences in scale that we encounter in mor- 
phological stability phenomena. From the figure, it is 
clear that the temperature variations faced by the 
region adjoining the front are of order A&/II- (<<A) 
and not A. An appropriate choice of scaling par- 
ameters has been found to be critical for com- 
putational efficiency. Adopting a temperature scale A 
results in extremely slow computational development 
of the front due to the resulting small values of non- 
dimensional velocities [5]. Thus, with the scales 
decided upon above, the equation for velocity of the 
interface becomes. 

Here, V; is the dimensionless velocity, and v  is the 
reference velocity scale. For O(l) front velocity, we 
obtain the velocity scale, r = o(,St(cq/l,)), where SI 
is again the Stefan number. 

The equation then becomes, in non-dimensional 
form, 

v,*= 
( 

-p+g 
: I : > 

(20) 

The form of the governing equation adopted 
depends on the scaling procedure applied. Hence, 
although equations (4) and (20) for the interfacial 
velocity were obtained from the same dimensional 
equation, equation (2) they differ in appearance. The 
choice of length, time and velocity scales and the 
resulting governing equations have substantial impli- 
cations in terms of computational efficiency. 

Thus the time scale of motion of the interface is, 

T=T, 

YinI You, 
, 

-4 I--- 

O (SJ=microns 

Instability length scale 

k - - -0 (&)=millimetres - - 4 

Thermal length scale 

FIG. 3. Illustration of a typical temperature distribution for the configuration in Fig. 4. The relevant 
temperature and length scales are indicated. 
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(21) 

Hence the dimensionless form of equation for heat 
conduction is, 

E,SItlr = v=i? (22) 

where F., = J.Jlr << 1. Hence, to first-order the inner 
temperature field is governed by the Laplace equation 
and not the unsteady diffusion equation. The diffusion 
equation is relevant to the interfacial processes only 
when Sf = O( l/s ,) i.e. when the undercooling is large 
enough in comparison to L/c, and the size scale 
of instability becomes comparable to the diffusion 
length. 

We may now write the following expression for the 
non-dimensionalised interfacial temperature which is 
obtained from equation (17), 

&‘*(d’)K* 
Jk > 

= e,(l-E,]r*(Cj)K*) (23) 

where the superscripts * indicate non-dimensional 
quantities and E= = d,/l,. The curvature has been non- 
dimensionalised in terms of (l/1,). We designate 
E~@,Y* as h, the effective surface tension for our 
problem. Figure 4 illustrates the physical domain on 
which we carry out our computations and the bound- 
ary conditions applied. In actuality, the boundary 
conditions at y = you, and y = 0 are to be obtained 
from a matching procedure from the external field. 

(ii) Outer region. As far as the outer region is con- 
cerned, the interface is to leading order merely a 
planar front. The temperature scale appropriate to 
the outer region is A, the undercooling. Lengths scale 
like I, = 2cr ,/u,,,, the diffusion length, where v,,, is the 
typical velocity of the planar front as viewed from the 
outer scales. The outer time scale may thus be taken 
to be 1$x,. Conditions corresponding to the imposed 
undercooling apply at the boundaries of the external 
field. In the results to follow, a further assumption is 
made that the interfacial motion is slow enough so 

i, --) y=o 
x=0 X OUL 

FIG. 4. Schematic of the physical domain. 

that the temperature linearly relaxes to T,,, - A over a 
distance I,, the diffusion length. 

Therefore, as in Fig. 3, at distance yDU, from the 
interface, 

Non-dimensionalising, one obtains the temperature 
at you, as, 

e IllnnCr = en - YO”, (25) 

where Y,,, = y,,,/& according to the scales adopted. 
Hence this value of temperature is specified at the 
boundary at Y = Y,,,. 

Features of the computational method 
Equations (20-23) are solved to follow the motion 

of a curved interface in the inner region. The coupled- 
implicit treatment along with the generalised interface 
update procedure is used. A small perturbation is 
placed on the interface, and a steady-state tem- 
perature field is taken as the initial condition. Tem- 
perature boundary conditions as applied as described 
above at Y = 0, i.e. the solid boundary and at 
y = yo,,, the liquid boundary. At the sides of the 
domain we continue to impose an adiabatic boundary 
condition. Due to the assumed symmetry, the inter- 
face is constrained to remain normal to the boundaries 
at X = 0 and X = X,,,,. Hence, at the boundaries, 
F, = 0. 

An adaptively generated grid distributes grid points 
in the desired regions. This may be accomplished 
by spacing the points appropriately along the inter- 
face as follows [17] : let wi be a weight function 
corresponding to the ith point along the interface, 
given by, 

(26) 

where K,,,.~ is the maximum value of the curvature 
along the interface, and w is an adjustable parameter. 
The arc length at any node i, is computed based on 
the equal variation of l/w. 

It is well known in dendritic growth theory [I] that 
the tip of the dendrite plays a crucial and sensitive 
role in determining its structure, in regard to wave- 
length and velocity selection. Thus it is desirable to 
place grid points preferentially at the tip by modifying 
the constant o suitably [5]. This procedure is adopted 
in our calculations below. o is assigned the value 0.5 
when K~ > 0 and 0.1 when K; < 0. 

Results and discussion 
The development of a perturbed interface, on 

the scale of the inner region, was tracked first for 
the case of zero surface tension. The initial perturba- 
tion of the interface was applied in the form of a 
cosine wave. The form of the perturbation was, 
yi = Yintcrracc (l-0.05 cos (n&/X,,,)). Symmetry was 
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assumed and hence only half of the perturbation was 
treated. Forty-one grid points along X-direction, and 
along Y 101 grid points in the liquid and 41 points in 
the solid are used in the calculations. 

The width of the domain for computation is taken 
to be four (lengths being non-dimensionalised by I,), 
which is the half-wavelength of the disturbance. The 
height Y,,, is taken to be 50. The interface is orginally 
positioned at Yinterra= = IO. The amplitude of per- 
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X 
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turbation is small, being 0.0125 times the wavelength. 
At the liquid boundary, in accordance with the scal- 
ing discussed above, dimensionless temperature of 
0 - 0, = -40 is applied, while at the solid boundary 
at Y = 0, 19 - 0, = 1. Thus the perturbation faces an 
undercooled melt, and the Mullins-Sekerka insta- 
bility [ 1] mechanism must operate. 

The results for the zero surface tension case, in 
Fig. 5, show the rapid development of the instability 
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FIG. 5. Development of perturbed interface without surface tension. Arrows show sequence of development. 
Only the right half was calculated. (i) Early stages of growth : (a) interface shape after reflection of the half 
computed. (b) Velocity of the right half. (c) Temperature profile at X = 2 in the two phases. (ii) Later 

stages of growth. (a), (b) and (c) as above. 
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leading to the splitting of the tip of the proturberance 
and the formation of a cusp near the boundary. This 
is consistent with the theory of travelling isothermal 
fronts (or isobaric fronts in the case of Saffman- 
Taylor fingers [5, 171). It is found that in such cases, 
depending on the initial conditions, the dis- 
turbance may bifurcate via tip-splitting or may 
sharpen into cusps. This is due to the fact that in 
the absence of surface tension, there is no physical 

mechanism that provides the short-wave cutoff. The 
lower limit of resolvable scales is set computationally 
by the grid spacing. Thus, all scales below the single 
available length scale, namely IT down to the grid 
spacing are permissible: The initial amplitude to wave- 
length ratio for the given perturbation, shown in Fig. 
S(ia) is 0.0125. At the final instant shown in Fig. S(iia) 
the protuberance has grown to just eight times its 
initial amplitude. On the left, in Fig. 5(ia), is shown the 

Later stages 
1 
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FIG. 6. Development of perturbed interface with surface tension y = 0.2. Arrows show sequence of 
development. Only the right half was calculated. (i) Early stages of growth: (a) interface shape after 
reflection of the half computed. (b) Velocity of the right half. (c) Temperature profile at A’ = 2 in the two 

phases. (ii) Later stages of growth. (a), (b) and (c) as above. 
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FIG. 7. Temperature contours in the two phases close to the interface. Contours in the solid are shown 
only in the range IM.3. In the liquid for 0 to -3. For the case of y = 0, the interface is an isotherm. For 
y = 0.2, the isotherms cross the interface. (i) Case without surface tension. (a) Contours in the solid. (b) 
Contours in the liquid. (ii) Case with surface tension p = 0.2. (a) Contours in the solid. (b) Contours in 

the liquid. 

initial shape of the perturbation. The mean position of 
the interface at the final stages of the development 
shown is at Y = 11.2 for the interface originally pos- 
itioned at Y = 10. Thus the interface does not progress 
very far along the Y direction before exhibiting tip- 
splitting and cusp formation. It is also noticed that 
even in the initial stages the development of the cusp 
is indicated as seen from the interface velocity plot, 
shown for the half-wave calculated, in Fig. S(iib). 
While leading to tip-splitting, from Fig. S(iic), some 
regions on the interface are travelling faster than their 
adjacent points. These perturbations will again form 
distinct proturberances and propagate further until 
splitting occurs. Also shown in Figs. 5(ic) and S(iic) 
are the temperature profiles in the solid and liquid 
regions at the initial and final stages, respectively. 
Obviously, the interface, corresponding to the dis- 
continuity in the temperature gradient, has not pro- 
gressed significantly before the instability occurs. 

The application of surface tension of value ysR = 0.2 
modifies the interfacial temperature through equation 
(23). In this case the interface development has been 

computed, and lies in strong contrast with results in 
the absence of surface tension. For such a low value 
of surface tension the interfacial temperature assumes 
values of the order of only O(lO-‘). However, this is 
sufficient to permit the growth of the perturbation 
without the formation of cusps to significant ampli- 
tudes, as shown in Fig. 6(iia). Initially, the entire inter- 
face moves upward with speeds that are of the same 
order. In fact, there is an initial transient, for the given 
initial conditions, when the interface velocity actually 
decreases. This is shown in Fig. 6(ib). However, soon 
after, the velocity begins to increase again, especially 
at the tip. In the final stages of the evolution shown 
in Fig. 6(iia) however, the interfacial velocity, shown 
in Fig. 6(iib) is markedly different in two regions. In 
the region around the tip, the velocity is very much 
larger than at the sides. This is again due to the differ- 
ences in temperature gradient between these regions. 
Regions of negative curvature are indeed warmer at 
the interface due to the Gibbs-Thomson effect. This 
is apparent from the temperature contour plots shown 
in Fig. 7, where the isotherms in the liquid are much 
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farther in the region of negative curvature, i.e. at 
the sides. This effect, of the interface slowing down 
strongly in the regions near the trough, has also been 
observed by DeGregoria and Schwartz [5] in their 
simulations of the Saffman-Taylor fingering phenom- 
enon. With surface tension, the interface has pro- 
gressed considerably in contrast to the case without. 
In fact the mean interface position now is at Y = 16 
compared to 11.2 in the previous case. The initial 
amplitude to wavelength ratio of the perturbation is 
0.0125 as in the zero surface tension case above. Here, 
the protuberance has grown to nearly 50 times its 
original size, in contrast with the previous case. This 
case illustrates the subtle effect that surface tension 
provides in modifying the stability characteristics of 
the phase interface. When the perturbation is in the 
embryonic stage, the surface tension influences the 
interface temperature only slightly (IO- ‘). Thus it pre- 
vents any formation of strong curvatures. However, 
as the protuberance grows, surface tension has an 
increasing effect on interfacial temperature and begins 
to influence the overall shape and velocity of the 
finger. It is noted that the growth rate of the per- 
turbation depends on the surface tension since the tip 
curvature of a bump on the solid is controlled by the 
capillary length scale. In fact, increasing the value of 
surface tension for the cases mentioned above leads 
to the attenuation rather than growth of the initial 
perturbation. 

5. CONCLUSIONS 

The following conclusions may be arrived at from 
the preceding. 

(1) The quasi-stationary approximation for inter- 
face motion is found to be inaccurate in capturing 
phase boundaries for higher Stefan numbers. With 
the full treatment, the temperature field, interface cal- 
culation and grid movement all interact over each 
iteration and time step. Such a computational method 
results in close agreement with analytical results for 
an isothermal interface. 

(2) A generalised interface motion technique is 
developed, which is not limited to a single-valued or 
isothermal interface, and produces results in close 
agreement with analytical solutions for the one-phase 
and two-phase cases. 

(3) The spatio-temporal development of deformed 
interfaces, with the allowance of the Gibbs-Thomson 
effect due to surface tension, is in line with theory. 
Tip-splitting and cusp formation are observed in the 
absence of surface tension. Addition of a small 
amount of surface tension completely changes the 
picture and a propagating finger is obtained for the 
duration computed. The shape and behaviour of the 
finger are in qualitative agreement with other inves- 
tigators [5,18-211 of analogous phenomena. 

In summary, an interface tracking method has been 
developed and applied to study the materials sol- 

idification process. In conjunction with the scaling 
procedure adopted, significant morphological develop- 
ment has been achieved in a computationally 
efficient manner. The results obtained show clearly the 
effects of the competing mechanisms on the stability of 
a perturbed interface. The method will be useful in 
elucidating the various aspects of the phase change 
process. 
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